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1 Introduction

This is an dynamic summary to keep everyone involved updated with the current
development of the 3rd generation of the Calphad unary database. It also contains
unresolved issues and ongoing discussions in Appendices.

The aim is to make the new thermodynamic databases closer to the physical reality
while keeping them useful for demanding engineering applications which
need rapid calculation of equilibria and various thermodynamic proper-
ties in multicomponent systems. The current unary database using the 1991
SGTE unary database by Dinsdale [7] will continue to be used in parallel for the
foreseeable future.

Section 2 is a very short summary of decisions and unresolved issues, usually with
a short motivation. We should keep this short and use the Appendices for detailed
explanations, expressing different opinions and discussions.

At present the Appendices are mainly my personal view of things, but everyone
should express their opinions there. All mistakes should also be recorded, otherwise
we will make the same mistakes over and over again.

2 Executive summary of sub projects

The sub projects are closely related, not independent.

1. Heat capacity zero at T = 0, for details see Appendix B.

This is a mandatory physical reality.

(a) The Einstein model, is used to describe the low T heat capacity of all
phases, stable or metastable. The Einstein model is preferred because it
can easily be integrated to a Gibbs energy and even using a Debye model
an additional polynomial in T is needed to fit experimental data.

(b) The additional polynomial in T must not have any terms in T with powers
≤ 1 or T ln(T ) and should not have any breakpoints.
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(c) The Einstein model has a parameter, denoted θ, which is related to the
phonon frequencies of the element. To fit the heat capacity of a pure
element, stoichiometric phase or an endmember of a solution phase, a
sum of several Einstein functions with different θ and weight factors can
be used. Normally the weight factors should sum up to unity (or the
number of atoms involved).

(d) In a solution phase θ will vary with composition. For simplicity each
element should have a single θ selected to vary with composition, see
Appendix B.1.

2. Entropy zero at T = 0, for details see Appendix C.

(a) The entropy of perfect crystalline phases at T = 0 K must be zero ac-
cording to the third law. This means there must not be any Gibbs energy
parameters with terms depending on T with power ≤ 1.

(b) The amorphous phase and crystalline phases that are not perfectly or-
dered at T = 0 K (for example magnetite) can have a positive entropy at
T = 0 K, The opinion of Göran Grimvall is explained in Appendix C.

(c) Excess Gibbs energies and other Gibbs energy parameters can have their
linear T dependent coefficients, converted to an excess parameter for the
θ parameter according to Dinsdale et al. [14]. See Appendix C.1.

3. Model for magnetism, for details see Appendix D.

The models by Qing [9] and Xiong [10] are accepted with minor modifications.
Add some references of recent assessments!

4. Extrapolation of the heat capacity of liquids below their solidifica-
tion T , for details see Appendix E.

The liquid two-state model proposed by Ågren [5] and recently described in
Becker et al. [11] is used. A recent assessment of Al-C is by Zhangting et
al. [16].

This model describe the amorphous and liquid phases with a single Gibbs
energy function.

(a) The Gibbs energy of the stable liquid and its metastable extrapolation to
low T is described by a single Gibbs energy function including a model
parameter Gd

M .

(b) The low T amorphous phase, Gamf
M , is described by an Einstein model

and a polynomial as explained in section 1. There can also be a magnetic
contribution [9].
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(c) The transition from the amorphous to stable liquid (glas transition) as
well as the stable liquid is described by a composition dependent Gd

M

parameter with a polynomial in T .

(d) The polynomial for Gd
M may include terms with T and T ln(T ) because

Gd
M must be zero when extrapolated to low T .

5. Extrapolation of the heat capacity of crystalline phases above their
melting T , for details see Appendix F

The Equi-Entropy Criterion (EEC) proposed by Sundman et al. [15] is used
to prevent the reappearance of crystalline solids extrapolated to high T . EEC
replaces the breakpoint used in the SGTE 1991 unary database at the melting
T of the solid phase of the pure elements by a software test of the entropy of
solid and liquid phases. It has been used in the assessment by Zhangting et
al. [16]

3 Some related topics

Modeling of thermal vacancies is discussed in Appendix G and molar volumes in
Appendix H.
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Appendix A The Gibbs energy per mole atom or

formula unit

A model for the physical contribution to the Gibbs energy, phyGm, is normally per
mole atoms indicated by the subscript m. However, the Gibbs energy models based
on the compound energy formalism (CEF) [4], require the contribution per mole
formula units of the phase. CEF use formula units because many phases contain
vacancies or more complex constituents than the pure elements. In such a case the
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physical model function must be multiplied with the number of atoms/formula unit
of the phase α,Mα, calculated as:

Mα =
∑
A

∑
s

aαs
∑
i

biAy
α
si (A1)

phyGα
M = Mα · phyGα

m (A2)

where A are the components, as is the number of sites on sublattice s, biA the
stoichiometric factor of A in constituent i and yis is the fractions of constituent i on
sublattice s.

This fact has been ignored in earlier application of the magnetic model resulting
in nonphysical values of the Bohr magneton number for some phases, for example
in the assessment of magnetite by Sundman [8].

Appendix B The Einstein model at low T

Integrating the Einstein heat capacity model

CP = 3R(
θ

T
)2

exp(θ/T )

(exp(θ/T ) − 1)2
(B1)

where θ is fitted to experimental data for the elements gives a Gibbs energy:

EinGm = 1.5Rθ + 3RT ln(1 − exp(−θ/T )) (B2)

The Einstein model is preferred because it is simpler than any other model to
integrate to a Gibbs energy. Even with a Debye model an additional polynomial in
T is needed to describe the experimental data for each pure element.

The polynomial in T added to the Einstein function must not include terms with
powers in T ≤ 1 or T ln(T ).

Note that θ depends on composition and possibly P but must not depend on T .

B.1 Modeling with multiple θ parameters

In some cases a pure element, stoichiometric compound or endmember has its heat
capacity fitted using multiple θ, for example pure C as graphite. A predefined func-
tion, GEIN, with a single parameter, θ can be used in the Gibbs energy expression
to calculate the contribution according to eq. B2, and its derivatives with respect
to T .
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The question is if these separate θ should be allowed to very with composition.

Bosses opinion:
To avoid complications in solutions a single θ should be selected for each element
or endmember to model the composition dependence even if the element itself is
described using several θ. The reason is that:

i) θ is an approximation of the phonon spectra,
ii) the heat capacity data for solutions are not well known and
iii) to avoid very complex modeling issues replacing linear T dependence in other
Gibbs energy parameters by θ parameters.

To do anything better than a single θ in solutions we should model the phonon
spectra which far outside the Calphad level of ambitions.

It is simple to select one θ, normally representing the major phononl frequency,
as the composition dependent θ used in the explicit Einstein contribution with a
composition dependent θ. This contribution must subsequently be subtracted from
the Gibbs energy functions fitted with multiple θ for the element.

Appendix C The entropy at T = 0 K

Göran Grimvall sent me a few emails about the entropy at 0 K in August 2019 which
I have summarized and translated below.

Here is a short summary of my opinions:

1. Pure elements and stoichiometric compound without defects and which are
dynamically stable has S = 0 when T = 0.

2. Amorphous structures have finite (positive) entropy at T = 0 K, see below.

3. Stoichiometric compounds with prefect structure but atomic disorder has finite
entropy at T = 0 K (one can argue in the same way as for amorphous phases).

4. Phases that are dynamically unstable at certain T and/or composition has
neither a defined entropy nor Gibbs energy. In Calphad one can assign them
any value as long as it does not have any consequences for the stable system.
But it is reasonable to treat them similarly to metastable phases using S = 0
at T = 0 K and have positive θ.

For the amorphous phase:

Consider a big piece of an amorphous system. Cut a large but finite part of this
with N atoms. Call this piece A and consider it as a perfectly ordered unit cell. If
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A is repeated periodically we have a system with entropy 0 at T = 0 K. But we can
also cut other parts in the big system, B, C, D etc all with N atoms. If any of these
is repeated periodically we have a system with entropy 0 at T = 0 K. But this is
not the case for an amorphous system. Instead it should be treated as a disordered
system with parts A, B, C etc. This disorder means a finite entropy at T = 0 K.
The larger value of N the greater number of alternative parts B, C etc.

Another way to argue: the entropy S = kB ln(Ω) is a measure of the degree of
disorder, Ω, i.e. the number of separate subsystems A, B, C etc. with practically the
same energy. If N is large then Ω is also large but the number of subsystems, A, B,
C etc. with N atoms in a given part of a large amorphous sample varies with 1/N.
Thus there is a given entropy per atom in an amorphous sample.

C.1 Converting linear T terms to Einstein θ

Following a proposal from Dinsdale et al. [7] to avoid non-zero entropy at 0 K means
that any linear T terms in the classical Kaufman lattice stabilities [3] (and several
later papers) can be converted to a ∆θ for the metastable phase to avoid non-zero
entropy in the metastable phases for the pure elements.

Linear T terms in excess parameters and other parameters contributing to the
Gibbs energy can also be converted to a parameter in the composition dependence
in θ. In principle a coefficient for a linear T term “b” can be replaced by “b/3R”
in a θ parameter with the same composition dependence.

Some care should be used to avoid negative θ.

Appendix D The magnetic model

The contribution to the Gibbs energy due to the magnetic properties per mole atom
is:

magnGm = RTf(τ) ln(β + 1) (D1)

τ =
T

TC
(D2)

where TC is the Curie or Neel T and β is the Bohr magneton number, all of which
can vary with the composition. The magnetic contribution from eq. D1 is zero when
either Curie or Neel T is negative.

NOTE the current functions [f(τ ] etc. should be added.
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The magnetic equation should be multiplied by Mα, see Appendix A, when used
per mole formula unit.

There are separate Neel and Curie T and it is quite surprising to find that for
a magnetic element the Neel and Curie T should have identical values but with
opposite sign!

Individual Bohr magneton numbers for the elements is not adopted yet. The same
Bohr magneton number is used for ferro- and antiferromagnetism as well as any kind
of magnetic contribution.

...unfinished, some recent assessment references needed

Appendix E The liquid two-state model

The liquid phase is described using a two-state model described in Becker et al. [11].

This model has a Gibbs energy description including an Einstein heat capacity
contribution for the metastable low T part of the liquid, Gamf

M , assumed to be an
amorphous phase. It has also a parameter, Gd

M , describing both the transition to
the liquid phase and the stable liquid above the melting T of the element:

Gliq
M = Gamf

M −RT ln(1 + exp(−G
d
M

RT
)) (E1)

As low T the term exp(−Gd
M

RT
) should approach zero and the second term in eq.E1

can be ignored. For the stable liquid exp(−Gd
M

RT
) should be much larger than unity

and second term becomes:

−RT ln(1 + exp(−G
d
M

RT
)) ≈ −RT ln(exp(−G

d
M

RT
)) = Gd

M (E2)

Gliq
M = Gamf

M +Gd
M (E3)

and thus the stable liquid is described by a sum the parameters in Gamf
M +Gd

M .

In the Gamf
M parameter one can use a linear T term because the amorphous phase

may have nonzero entropy at 0 K. But no T ln(T ) and no T powers less than 1
because the amorphous phase must have zero heat capacity at T = 0 K.

In the Gd
M parameter both linear T and T ln(T ) terms are possible because this

should not give any contribution at low T .

The parameters for the liquid two-state model, Gd
M , can be very different for

elements with different melting T , for example Al and W [13]. Great care should be
taken determining parameters in Gd

M ,
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Composition dependent parameters for the stable liquid can be used in both Gd
M

and Gamf
M but usually very little is known about the amorphous phase. Interaction

parameters in the Gd
M can have linear T and T ln(T ) terms as they will not influence

the low T properties.

Appendix F The equi-entropy criterion, EEC

The breakpoint at the melting T for the pure elements in the 1991 SGTE unary
was an emergency fix to avoid that solid phases, which normally have an increasing
heat capacity before melting, would become stable again when this increase is ex-
trapolated to higher T . This will happen if the extrapolated heat capacity of the
solid is larger than that of the liquid, which normally is fairly constant around 3R.
In the 1991 SGTE unary the heat capacity of the extrapolated solid was forced to
approach that of the liquid above the breakpoint. The breakpoint represents a kind
of 2nd order transition in the solid and it solved the primary problem but created
others, for example strange heat capacity curves for compounds with their heat ca-
pacity modeled with the Neumann-Kopp rule [1, 2] and with higher melting T than
a constituent element.

The similar breakpoint for the liquid, to avoid that the liquid becomes stable at
low T , is removed by the liquid two-state model, see Appendix E. But there is no
similar way to prevent the heat capacity of extrapolated solid to increase.

Instead a well established experience that the liquid is always the condensed
phase with the highest entropy in a system, is used to prevent the extrapolated
solid to become stable at high T . The liquid will have higher entropy than any stable
solid phase in a system independently of the phase compositions.

The Equi-Entropy Criterion (EEC) proposed by Sundman et al. [15] is based on
this experience. During an equilibrium calculation EEC will compare, at the same
T , the entropy of the solid phases with the entropy of the liquid at their current
compositions. If a solid phase is found to have higher entropy than the liquid the
conclusion is that the solid suffers from a bad extrapolation of its heat capacity and
the solid will not be allowed to be stable even if that would lower the Gibbs energy
of the system.

EEC does not require any modification of the Gibbs energy expression of the solid
extrapolation but must be implemented in the thermodynamic software using the
data. No breakpoint is needed in the Gibbs energy function of the solid but some
care should still be used to avoid that the heat capacity increases very rapidly above
its melting T .

It is not forbidden to introduce a breakpoint in order to use the data in a software
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where EEC is not implemented but such a breakpoint should be at an even 100 K
above the melting T , to indicate it is a fictitious breakpoint, and the derivative of
the heat capacity should be continuous at the breakpoint to avoid the resemblance
with a 2nd order transition.

During the discussions of EEC there were attempts to define a “crystalline break-
down T”, which should be a few 100 K above the melting T but it was found difficult
to handle for solution phases and abandoned. EEC is related to the “entropy catas-
trophe” criteria [6] for a pure compound but it is applied to cases when the solid
and liquid does not have the same composition because at the same T no solid phase
can exist with a higher entropy than the liquid.

Appendix G Thermal vacancies

All phases has defects of different kinds and the thermal vacancies are important for
simulating kinetic properties. The Gibbs energy for thermal vacancies in a phase,
GVa, should be:

◦GVa ≈ 2.3T (G1)

according to Rogal et al. [12], in order to limit the maximal vacancy fraction to 10%.

There are several other proposals for thermal vacancies but it should be recognized
that this energy is not related to vaporization or equilibrium with any other phase,
most vacancies are created when atoms move to a grain boundary or other crystalline
defect.

Appendix H Modeling the molar volume

The volume is not included in the 1991 unary database but is of great importance.
Some ideas:

1. The most recent discussion made me think that the thermal expansion of
elements should be zero at T = 0? Maybe use an Einstein function for α?

α =
1

V

(
∂V

∂T

)
P,N

(H1)

possibly with the same θ as for the heat capacity? The volume change is
certainly associated with the vibrations, i.e. the Einstein θ.

2. Can we handle of the invar effect? Combine volume with magnetic model?
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